Under review as submission to TMLR

Active Learning with a Noisy Annotator

Anonymous authors
Paper under double-blind review

Abstract

Active Learning (AL) aims to reduce annotation costs by strategically selecting the most
informative samples for labeling. However, most active learning methods struggle in the
low-budget regime where only a few labeled examples are available. This issue becomes
even more pronounced when annotators provide noisy labels. A common AL approach for
the low- and mid-budget regimes focuses on maximizing the coverage of the labeled set
across the entire dataset. We propose a novel framework called Noise-Aware Active Sampling
(NAS) that extends existing greedy, coverage-based active learning strategies to handle noisy
annotations. NAS identifies regions that remain uncovered due to the selection of noisy
examples and enables resampling from these areas. We introduce a simple yet effective noise
filtering approach suitable for the low-budget regime, which leverages the inner mechanism
of NAS and can be applied for noise filtering before model training. On multiple computer
vision benchmarks, including CIFAR100 and ImageNet subsets, NAS significantly improves
the performance of standard AL methods across different noise types and rates.

1 Introduction

Deep learning typically relies on large amounts of annotated data. But while unlabeled data is often abundant,
the annotation process can be both time-consuming and expensive. This challenge is particularly evident in
fields like medical imaging, where annotations demand expert knowledge and are therefore costly. Active
Learning (AL) offers a powerful approach to reducing annotation costs by prioritizing the most informative
samples for model training.

In pool-based active learning, the challenge is formulated as a "best-subset" problem: Given a large pool U of
N unlabeled samples and an annotation budget B < N, the objective is to identify a subset Q* C U, which
is optimal in the following sense: After annotators label Q*, a model M trained on Q* obtains the lowest
generalization error compared to any other subset QQ of the same size B used for training M. This problem is
NP-hard, even if all labels are available. Nevertheless, various heuristic strategies have been proposed that
consistently outperform the baseline approach of random sampling.

Another important topic in this work is Learning with Noisy Labels (LNL), which arises naturally due to
errors in human and Al-generated annotations (Song et al. 2024). Label noise becomes more likely as the
annotator pool expands, such as in crowd-sourcing.

In this work, we focus on sample selection in AL and ask whether it is possible to design query selection
strategies that account for noise when selecting samples for annotation. We propose a novel framework that
extends existing query selection methods, particularly those based on sample distances, enabling them to
intelligently account for label noise during sample selection.

Summary of Contributions
1. A query selection framework compatible with multiple state-of-the-art AL strategies, enhancing their
performance in the presence of label noise (see Fig. .

2. Introduction of a simple yet effective noise filtering tool that performs well even with limited samples
and integrates with the query selection framework.

3. Addressing the challenge of instance-dependent noise.

Under review as submission to TMLR

NAS — Noise-Aware Active Sampling (ours)

Query Selection (§) —@——» Annotation

’

Unlabeled Sample
® Clean Sample

® Noisy Sample eeoe
— Input
--- Repeatedly
v
Model Training | —— " Noise Filtering (A)

- i -

Figure 1: Overall visualization of our framework for Noise Aware Query Selection (NAS). NAS (illustrated with a
dashed orange line) takes as input a query selection strategy S and a noise-filtering algorithm A. The framework
alternates between selecting b samples using S, sending these samples to the annotator, and filtering the noisy samples
with A before selecting the next set of samples.

2 Background and Related Work

2.1 Active Learning

In most approaches within the pool-based active learning framework, the total annotation budget is allocated
iteratively. In each iteration, a batch of B samples is selected for annotation. Beginning with an unlabeled
set U and a labeled set L (which may or may not be initially empty), the process follows these steps:

1. Query Selection - Select a query Q C U of size B using a strategy S.
2. Annotation - Send Q to the annotator to obtain labels, and update L=LUQ and U=TU\ Q.

3. Model Training - Train classifier M using the labeled set L (or with {L,U} for semi-supervised
learning).

Query selection strategies fall into two main categories: uncertainty-based and typicality-based, with diversity
as another key consideration. Uncertainty-based strategies select samples where the model is least confident,
based on its predictions for unlabeled data. This category includes methods like Margin (Scheffer et al.|

2001), Entropy (Wang & Shang) [2014), and BADGE (Ash et al.| [2019).

Typicality-based strategies (also known as representation- or representative-base strategies, as in
(2024); Bae et al (2025)) aim to identify a subset of "typical" or "representative" samples in U, under the
rationale that a model trained on such a subset would generalize well. This family includes methods like
k-medoids (Ghadiri et al. |2015), Typiclust (Hacohen et al., [2022), ProbCover (Yehuda et al., 2022), and
MaxHerding (Bae et al. [2025). Typicality-based strategies rely on effective data representations. Recent
methods like SimCLR (Chen et al.l [2020a), MOCOv2 (Chen et al., 2020b), and DINO (Caron et al.l, [2021)
have developed powerful self-supervised representations, enabling typicality-based strategies to perform well
in complex domains, like natural images.

Previous works, such as (Hacohen et all [2022; Hacohen & Weinshall, 2023)), have shown that the annotation
budget is a critical parameter in determining the most suitable strategy. Uncertainty-based strategies are
more effective when the annotation budget is relatively high (hundreds of samples per class), whereas the
low-budget regime (a few examples per class) is better suited for typicality-based strategies. A query selection
strategy applied in an unsuitable budget regime may perform worse than random selection.

Under review as submission to TMLR

2.2 Learning with Noisy Labels

In settings with mislabeled data, approaches can be categorized into four families: Robust Architecture, Robust
Regularization, Robust Loss Design, and Sample Selection (see review by [Song et all [2022). Some have
drawbacks, such as assuming a specific noise distribution. For instance, methods in the Robust Architecture
family (Sukhbaatar et al.l [2014} |Chen & Guptal [2015; |Goldberger & Ben-Reuven, [2017; |Gupta et al., [2019)
use a denoising layer to learn a noise transition matrix, later removed during inference. However, this assumes
a noisy channel model based on class confusion and overlooks instance-dependent noise. Likewise, a few
methods based on robust loss also assume such independence between label noise and input features (Bekker
& Goldberger} 2016; [Yao et al.l [2020)).

Sample Selection Methods LNL methods in the Sample Selection family aim to distinguish between
mislabeled (noisy) and correctly labeled (clean) samples, allowing models to train primarily on clean data.
Some methods exploit patterns in deep neural network (DNN) training dynamics. For example, |Arpit et al.
(2017); [Han et al.| (2018]) show that DNNs learn clean samples earlier than noisy ones, resulting in lower
loss on clean samples during early training, before overfitting occurs. One method that leverages this is
Area-Under-the-Margin (AUM) (Pleiss et al., [2020), which measures the margin between the assigned label’s
logit and the highest other logit. The AUM score is computed by summing these margins over early training
epochs. With appropriate early stopping, noisy samples tend to exhibit lower AUM scores. To establish a
threshold for noise filtering, the method assigns a "fake" label C' + 1 (where C is the number of classes) to
a random subset of samples, treating them as an additional noisy class. The threshold is then determined
based on the AUM scores of this fake class, and samples with AUM scores above the threshold are classified
as clean.

Semi-Supervised Methods The most effective LNL approaches are Semi-Supervised Learning (SSL)
methods, which fall within the Sample Selection family. These methods identify clean and noisy samples
and train an SSL model on all data, treating noisy samples as unlabeled. SSL methods have achieved
state-of-the-art performance on standard LNL benchmarks. Examples include DivideMix (Li et al., |2020),
UNICON (Karim et all 2022), ProMix (Xiao et al. 2022), and PGDF (Chen et al., 2023)). However, in our
experiments, we found that these methods performed poorly in the noisy low-budget setting, where most
samples are unlabeled, and the labeled set contains noise.

2.3 Active Learning in the Presence of Label Noise

As|Nuggehalli et al.| (2023) have already noted, the setting of label noise in active learning has rarely been
studied. Nevertheless, several papers address both topics of Active Learning and Label Noise. (Gupta et al.
(2019) examines the issue of noisy annotators in the active learning setting. Unlike us, they tackle this
challenge by adding a denoising layer to the neural network rather than through an adjusted query selection
strategy. Other works, such as (Chakraborty, [2020), assume access to multiple noisy annotators and a clean
validation set, which simplifies the task of identifying noisy labels. Similarly, |Zhang & Chaudhuri| (2015);
Chen et al.| (2022) assume the availability of a perfect oracle that always provides correct labels in addition
to the noisy annotators. Our work is orthogonal to these approaches and can naturally integrate with
improved architectures as well as the presence of multiple annotators.

The study by Nuggehalli et al.| (2023) proposes a query selection method called DIRECT, which, like our
approach, is adapted to handle noisy scenarios. However, DIRECT is specifically designed for cases involving
noisy labels combined with extremely imbalanced data. Moreover, while DIRECT is better suited for
high-budget scenarios, our method is tailored for low-budget settings.

Another category of work, such as (Lin et al., 2016; [Younesian et al.,2021)), uses the term Active Learning in
the context of data cleaning, where all data labels are available, and the goal is to identify suspicious samples
for re-labeling by an oracle. In a sense, this setting is the opposite of ours. While this line of research can be
viewed as a subset of the Learning with Noisy Labels (LNL) field incorporating active learning, our work is
more appropriately described as a branch of Active Learning (AL) that addresses label noise.

Under review as submission to TMLR

Low-Budget AL in the Presence of Label Noise Some typicality-based active learning methods aim
to maximize the coverage of the labeled set, where a sample is considered to cover its neighbors in feature
space. ProbCover (Yehuda et all, [2022) formalized this objective as a greedy approximation of the Mazimum
Coverage problem, which is NP-hard. Typicality-based methods tend to excel in the low-budget regime by
avoiding excessive sampling from the same regions of the data. However, label noise can be detrimental in
this context. A noisy sample may be mistakenly treated as representative of its neighborhood, undermining
the effectiveness of coverage.

3 Proposed Method

As summarized above, methods that are suitable for the low-budget regime of active learning may be
detrimentally affected by label noise. Likewise, as DNN training requires substantial data in order to
generalize, DNN-based noise-filtering methods are likely to fail in low-budget settings. Our method addresses
these two challenges.

. ESPCI=2 ESPCI=5 _ ESPCI=10 Figure 2: Performance of the
AUM method (as described

- 0.8 //* 0.8 /r'—‘ 0.8 '/4 in in identifying misla-
2061 0.6 1 0.6 1 beled data selected by Prob-
O, i | Cover in the low-budget regime
2 04 04 04 on CIFARI00 with symmet-
0.2 1 0.2 1 0.2 ric noise. Each column repre-
0.0 L I I d ool ! | dooL I I I sents a different expected num-
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 ber of clean samples per class

1—%noise
noise precision, recall, and pre-

1.0 1.0 1.0 _W (E[SPC]), with the budget
0.8 W 0.8 | !$i : 0.8 1 given by ESPCXC Rows show

=06 0.6 1 0.6) ; :
3 dicted noise ratio. The orange
& 0.4 0.4 4 0.4 line represents the original
0.2 1 0.2 - 0.2 1 AUM, while the blue line rep-
0.0 0.0 0.0 resents LowBudgetAUM. Un-
02 04 06 08 02 04 06 08 02 04 06 08 like AUM, which predicts most
10 10 10 samples as noisy, LowBud-
a getAUM estimates noise rates
= 0.8 0.8 0.8 4 .
2 more accurately—even with as
-5 0.6 0.6 4 0.6 1 few as two clean samples per
@ . s .
£ 04l 04 | 041 class. .whlle maintaining high
5 precision and recall. Each
§ 0.2 1 0.2 1 0.2 point shows the mean and stan-
0.0 L : : - 0.04 . ; ~ 0.0+ ! ! ! dard error across 10 repeti-
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 tions.
% Label Noise % Label Noise % Label Noise
original AUM —— AUM with lower epochs and threshold

—— AUM on SimCLR features —§— AUM on SimCLR with lower epochs and threshold (LowBudgetAUM)

3.1 Noise Filtering Algorithms for Low Budget

Naive Method for Noise Filtering Assuming we have a good representation of our data, where the
distances between embeddings reflect the semantic distances between samples, a mislabeled sample would
behave as an outlier and thus be detectable. Accordingly, we propose the following algorithm for noise
filtering: Train a k-fold cross-validation linear model on the labeled data, and classify as noisy any sample for
which fewer than half of the models agree with its given label. We refer to this noise-filtering method as
CrossValidation.

DNN-based Noise Filtering

Under review as submission to TMLR

As noted earlier, DNN-based noise-filtering algorithms often fail in the low-budget regime (as well as the
SOTA Semi-Supervised methods, like ProMix (Xiao et al., [2022))). To adapt such algorithms to this setting,
we propose the following modification: Instead of training a DNN directly on the images, we extract
representations for the images using a self-supervised pretrained model, and train a linear classifier on these
embeddings. As a case study, we examine this adaptation in the context of the AUM method (Pleiss et al.l
2020)), that was mentioned before. We introduce an adapted version of AUM for the low-budget setting, which
we refer to as LowBudgetAUM. Most importantly, we compute the AUM score using a linear classifier on
self-supervised representations instead of training a DNN on the images directly. Additionally, we determine
an earlier stopping point and lower threshold, for the hyperparameters in the original paper are suboptimal
in the low-budget regime (see Appendix .

The empirical results presented in Fig. [2] demonstrate that while the original AUM method performs poorly
in low-budget scenarios, LowBudgetAUM effectively predicts the noise rate while maintaining high recall and
precision (when noise filtering is treated as a binary classification task).

3.2 NAS: Noise-Aware Strategy for Query Selection

Most state-of-the-art (SOTA) typicality-based query selection methods are greedy algorithms: in each
iteration, samples are scored by their contribution to some objective function, and the sample with the highest
score is added to the labeled set. Our goal is to design a query selection strategy that greedily maximizes
the same objective function while accounting for label noise. We propose the following framework: given a
greedy, typicality-based query selection strategy S, a noise-filtering algorithm for low-budget settings A (e.g.,
LowBudgetAUM as discussed above), and an annotation budget B, the following cycle is executed:

1. Apply A to the current labeled set IL to obtain a partition into a clean subset L¢jean and a noisy subset
]Lnoisy-

2. Select a set Q of size b < B from the current unlabeled set U using the strategy S, considering only
Lciecan as the labeled set and ignoring Liyeisy-

3. Add Q to L and remove it from U.

The cycle continues until the annotation budget B is exhausted. We refer to this method as Noise-aware
Active Sampling (NAS). If the strategy S seeks to cover areas in the data, this meta-strategy needs to
identify areas that remain uncovered after S sampled from them, in the case the representative S sampled
turned out to be noisy. Psuedo-code for this method is provided below in Alg.

The Choice of b Determining the hyperparameter b (the size of Q at each iteration) involves a tradeoff:
As b — 1, our framework becomes more precise in correcting S, but the computational complexity increases
since more calls to A are needed. Conversely, as b — B, the runtime decreases, but the framework behaves
more similarly to S. In all our experiments, we set b = C, where C is the number of classes in the dataset.
In the special case of using an ideal noise-filtering algorithm (one that makes no mistakes), we seﬂ b=1.
The complexity of the algorithm is dominated by the run-time of S and A, and is given by Ts + % -Ty.

ProbCover as a Working Example ProbCover (Yehuda et al., |2022)) is a SOTA strategy for active
learning in the low-budget regime. Like other typicality-based strategies, it aims to maximize the coverage of
L. A sample z is considered to cover all samples in By 4)(x), where B(qs)(x) is a ball around x with radius
0 > 0, defined with respect to some metric d(-,-). Both § and metric d are hyperparameters of ProbCover.
Initially, ProbCover constructs a directed graph G, where each vertex represents a sample, and there is an
edge between two vertices (z,2') if and only if ' € B(g5)(x). At each iteration, ProbCover adds to Q the
sample x € U with the highest out-degree in G, and then removes all incoming edges to the samples in
B(a,s5)(x). This step is crucial for preventing excessive sampling from the same area, thereby maintaining
high coverage of L. The coverage of L, in this context, is the union of all the balls B4 5)(z) for samples in L,

i.e., coverage(LL) = Ba,5) (L) £ User Ba,s) ().

1In this discussion, we have not accounted for the annotator, to whom we also send more separate queries as b becomes
smaller. For now, we assume that this is not a limiting factor in our setting.

Under review as submission to TMLR

Algorithm 1 NAS: Noise-aware Active Sampling
Input: unlabeled pool U, initial labeled pool LL;,,;;, query & 801
budget B, query selection strategy S, noise filtering £ 507
algorithm A, a trained model M (optional) g 401
Output: a labeled set L >
301
1: L«]Linit U
2. while |L| < B do é 201
3: Get a partition (Leiean, Linoisy) = A(L) 10
4: if use_noise dropout then PRI <
) > o o > o o
5: q= % # predicted noise ratio ST F P TP T
6: 7 = 100 x max(min(g4,1 — §),0.1) 0
7 Randomly move n% from Lyisy t0 Lelean
8 end if Figure 3: The maximal degree in graphs
9. b« number of classes G5 of CIFAR100, after removing 3200 samples
10: Q + S(Letean, U, M, b) 4 select b samples pilcked by ProbCfn;er with 6.: 0.22,'as a func-
11 L«LUQ tion of §. On this range, this function is gen-
) UeU erally concave, regardlessly to the number of
12: d <_h'l \Q samples ProbCover picked.
13: end while
14: return L

Given ProbCover as the selection strategy S, our framework functions as follows: After every b query selections
and obtaining a partition (Lclean,Lnoisy), we remove all edges in B(g,s)(Lciean) as well as the outgoing edges
of the noisy samples. The latter step is essential to prevent re-selecting the noisy samples themselves. This
approach ensures that the density of an area — and consequently the query selection score — remains high
until we confirm that a clean sample has been selected from it. In Appendix [A] we present the pseudo-code
for the case where NAS employs ProbCover as S, which we refer to as Noise-Aware ProbCover (NPC).

Updating ProbCover’s radius § 4 is a crucial hyperparameter of ProbCover, and |Bae et al.| (2025))
have demonstrated its high sensitivity to this parameter. The authors of ProbCover proposed an automatic
algorithm for determining 6 without requiring a validation set (as the existence of a validation set is often
unrealistic in low-budget scenarios). However, this approach does not guarantee optimal results.

In our experiments, we observed an additional issue related to the radius §: during the selection process, the
maximal degree in the graph diminishes, until the graph eventually becomes empty. When this occurs, we
update ¢ using the following policy: (i) Construct a series of graphs G, each corresponding to a different §
value. (ii) Remove from these graphs the samples already selected by ProbCover and their associated edges
in By, balls. (iii) Choose the ¢ corresponding to the graph with the highest maximal degree.

The rationale behind this policy is as follows: The maximal degree, as a function of §, is concave within the
range [0, dinit], where di,i¢ represents the value of ¢ previously used by ProbCover. As § — 0, the graph’s
maximal degree approaches zero, even before removing samples. Similarly, as § — dinit, the graph becomes
empty by definition. Fig. [3]illustrates this behavior. The value of § that maximizes the graph’s maximal
degree, while considering the already sampled points, yields the most informative distribution for subsequent
query selections.

Adapting NPC to Instance-Dependent Noise

The above adaptation is well-suited for scenarios where the label noise is conditionally independent of the
sample’s features, such as the symmetric and asymmetric label noise cases described in (Tanaka et al.l 2018).
However, in many real-world scenarios, this independence assumption does not hold. When the annotator is
a human or even an Al model, some samples may be inherently "harder" to label than others, leading to a
higher probability of these samples being mislabeled. Furthermore, such "harder" samples tend to cluster in

Under review as submission to TMLR

the feature space of a Self-Supervised Learning (SSL) model, creating "noise clusters'—regions where noisy
samples are concentrated. An example of this phenomenon is provided in Appendix

To address this scenario, we adapt NPC as follows: ProbCover can be viewed as initializing a weighted graph
where all edges have an initial weight of 1. When a sample is selected, the algorithm reduces the weights of
edges in the B4 s) ball around that sample to 0. The out-degree of a sample is then computed as the sum of
the weights of its outgoing edges. In our adaptation for instance-dependent noise, after obtaining predictions
from the noise-filtering algorithm, we reweigh the edges. Specifically, for samples in B 5)(Lnoisy), We set

the weights of their incoming edges to 1 — §, where ¢ = % represents the estimated noise rate. These

modified weights reflect the motivation to sample from noisy regions as a decreasing function of the estimated
noise rate. This reweighing step thus balances the trade-off between achieving sufficient coverage of the data
and avoiding excessive sampling from noisy regions. We refer to this version of the algorithm as Weighted
NPC.

Using Noise Dropout Fig. [2| demonstrates that LowBudgetAUM performs well in the low-budget regime.
Nevertheless, its performance is influenced by the distribution of samples in the labeled set. In some cases of
high noise rates combined with specific distributions of the labeled data, we observed that LowBudgetAUM
could predict noise rates significantly higher than the actual noise rates.

To address these pathological cases, we utilized the following solution: we define n = max(min(g, 1 — §),0.1),
where § is the predicted noise rate. We then randomly select n% of the samples that LowBudgetAUM predicts
to be noisy and treat them as if they were clean samples in the next iteratiorﬂ This addition to NAS was
shown to resolve these pathological cases effectively. In Appendix [F] we demonstrate that noise dropout does
not harm performance, even when applied in scenarios with low predicted noise rates.

4 Empirical Evaluation

We evaluated two training frameworks:

1. A fully supervised framework, in which we trained a ResNet-18 on the labeled samples.

2. A linear model trained using the labeled samples, on features extracted from a self-supervised model,
pretrained on the unlabeled dataset.

Both frameworks were evaluated with the symmetric noise scenario. For the other scenarios — asymmetric
noise, real-world noise, and most of the ablation study — only framework [2| was evaluated, for it easier to
train and usually outperforms framework [I] in the low-budget regime. The implementation details are given
in the Appendix [C| In both frameworks and across all active learning (AL) strategies, noisy samples were
filtered prior to the supervised training step using either LowBudgetAUM or CrossValidation, depending on
the noise-filter that NAS used. The model was then trained exclusively on the clean samples, a standard
approach for learning with label noise (see . This preprocessing step improved the performance of all
query selection methods. Nevertheless, as demonstrated in the ablation study, this filtering process is not the
sole factor contributing to the advantage of using NAS.

4.1 Methodology

Synthetic Noise We used two benchmark datasets: (i) CIFAR100 (Krizhevsky et all [2009), and (ii)
ImageNet-50 (Van Gansbeke et al., [2020). ImageNet-50 is a subset of ImageNet (Deng et al. |2009), containing
50 classes, 64K train images, and 2,500 test images. Different levels of symmetric and asymmetric label
noise were explored. Symmetric (or uniform) noise was introduced by randomly selecting a subset of samples
from the dataset and uniformly replacing their labels with other labels at random. For the asymmetric (or
label-dependent) noise scenario, prior work (Patrini et al.| [2017} |[Yao et al.| [2020; |Song et all 2022) modeled
the noise as a transition matrix T', where T;; = P(§ = j | y = i) represents the probability of a sample having
a noisy label g given that its true label is y. For a specified noise ratio, T' determines both the proportion

2The noise dropout is only suggested as part of NAS, i.e., during the utilization of LowBudgetAUM for query selection, and
not when using LowBudgetAUM to filter noisy samples before training.

Under review as submission to TMLR

of noisy samples in each class and the assignment of incorrect labels. To simulate a challenging transition
matrix, we trained a ResNet-18 on the full dataset for 10 epochs, generated a confusion matrix based on

the network’s predictions on the test set, and normalized each row of the confusion matrix to produce the
transition matrix 7.

Real-World Noisy Datasets We tested our method on the real-world noisy dataset of CIFAR100N (Wei
et al.| [2021)), which contains the images of CIFAR100 with human-annotated labels and includes 40.2% noise,
and on the dataset ClothinglM (Xiao et al.,2015) which contains clothing images with noisy labels collected
from online shopping websites. On these dataset, we compared ProbCover to NPC — our method NAS when
using ProbCover as S — and to Weighted NPC.

Self-Supervised Representations For pretrained features, we used SimCLR (Chen et al. [2020a)) for
CIFAR100 and CIFARI00N and DINOv2 (Caron et al., 2021) for ImageNet-50. These models used us for
creating feature spaces for the coverage-based AL strategy S and the low-budget noise filter algorithm A, as
well as feature spaces in which we trained the linear classifier in framework 2] In Appendix [H] we examine
additional feature spaces, demonstrating the robustness of our framework to different representations.

R S P — IS 1T I T &

g, g s R g j i \“‘-—n\

c c / b c —

os o 4 SR N

L4 (9} o r——""__\ v

& £ 2 £ o

2 g : /.J\\ X

32 bl T b

® & _, ©

51 5 5 -6

oo 9 -4 O -8

< 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])

(a) CIFAR100, 20% Noise (b) CIFAR100, 50% Noise (c) CIFAR100, 80% Noise

IS R S

[e bt

Y s + 3 &l Y10

5 T 5 41 : 5

g ! "—'/ @ 2| # g 5

B 2 B o a M

0 s -

g, B ey . g g

5 54 5 s

32 g -6 3

< 2 4 6 8 10 15 20 30 50 70 100 < 2 4 6 8 10 15 20 30 50 70 100 < 2 4 6 8 10 15 20 30 50 70
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])

(d) ImageNet-50, 20% Noise (e) ImageNet-50, 50% Noise (f) ImageNet-50, 80% Noise
-&- random -~ ProbCover NPC w/ LowBudgetAUM (ours) NPC w/ CrossValidation (ours)

Figure 4: Framework [1] results on CIFAR100 and ImageNet-50 with varying symmetric noise levels. The y-axis shows
the mean accuracy difference from random query selection. A ResNet-18 model is trained in a fully supervised manner.

4.2 Results

Figures [4] and [5] show the results for the symmetric noise scenario under training frameworks [I] and
respectively. The y-axis in all the plots presents the difference between the mean accuracy achieved by each
query selection method and the mean accuracy obtained by training a similar model using random query
selection, along with the Standard Error (STE) for 5 repetitions (all experiments in this paper repeated 5
times). The x-axis counts the annotation budget, in units of expected clean samples per class (E[SPC]), where
the budget in each point equals %. Fig. |6[shows the results for asymmetric noise, and Fig. 7| presents
the results for CIFAR100N. Results for ClothinglM can be found in Appendix [E] To demonstrate robustness
to the noise-filtering algorithm A, in figures [4] and 5] under the symmetric noise scenario, we vary A between
subplots. In Framework 1, CrossValidation is employed when training with CIFAR100, while LowBudgetAUM
is employed when training with ImageNet-50. In Framework 2, the selection of the noise-filtering method is
reversed. In Appendix [G] we introduce additional noise-filtering algorithms tailored to the low-budget regime
and show that NPC outperforms ProbCover regardless of the noise-filtering algorithm used.

Under review as submission to TMLR

3 15.0

—
nd
2

10.0

oo~
o n

ER23)

e
o

@ N
o

Y T——
2 4 8 10 15 20 30 50 70

Budget (E[SPC])

. ==

by
T

6 8 10 15 20 30 50 70 2 4 8 10 15 20 30 50 70
Bu

dget (E[SPC]) Budget (E[SPC])
(a) CIFAR100, 20% Noise (b) CIFAR100, 50% Noise (c) CIFAR100, 80% Noise

e

30

o

°
-
<+
e

-

Accuracy Difference (%)

Accuracy Difference (%)

Accuracy Diff

~

w
S

w
&
S

S
N
&

&
~
)

Accuracy Difference (%)
Accuracy Difference (%)
RN

NN W
@ S
.
S
&

-

o
-
o

o u
«

Accuracy Difference (%)

o w

30 50 70 2 4 6 10 15 20 30 5 70

6 8 10 15 20 0 6 10 20
Budget (E[SPC]) Budget (E[SPC]) Budget ([E[SPC])

(d) ImageNet-50, 20% Noise (e) ImageNet-50, 50% Noise (f) ImageNet-50, 80% Noise

=@~ random =§§= ProbCover NPC w/ LowBudgetAUM (ours) =@~ NPC w/ CrossValidation (ours)
=@~ NPC w/ LowBudgetAUM + noise dropout (ours)

Figure 5: Framework see caption of Fig. @ we evaluate a linear model trained on self-supervised pretrained features.

§ 14 § 17.5
o 12 o 15.0
v .
C 10 c 125
1] o
T 8 o 10.0
&= &=
Qe a ’®
> 4 > 5.0
O O
C © 25
3 3
g 0 S 0.0
2 4 6 8 10 15 20 30 50 70 100 150 10 15 20 30 50 70 100 150
Budget (E[SPC]) Budget (E[SPC])
(a) CIFAR100, 40% Noise (a) CIFAR100N (AUM)
R 3
15
G 15 o
—_ —_
[[
£ 10 &£ 10
[a)] [a)]
> 5 >
O O 5
[v] (0]
— —
S50 >
O O 0
< <
2 4 6 8 10 15 20 30 50 70 20 30 50 70 100 150
Budget (E[SPC]) Budget (E[SPC])
(b) ImageNet-50, 20% Noise (b) CIFAR100N (CV)
-8~ random == ProbCover NPC, using LowBudgetAUM Noise Filter (ours) -8~ random -§- ProbCover NPC w/ LowBudgetAUM (ours) @i~ NPC w/ CrossValidation (ours)

~8- Weighted NPC w/ LowBudgetAUM (ours) =gl Weighted NPC w/ CrossValidation (ours)

Figure 6: Results given different levels of asymmetric Figure 7: CIFAR100N, where noise filtering is done with
noise, generated by the protocol described in [} LowBudgetAUM in (a) and CrossValidation in (b).

Under review as submission to TMLR

Comparison to Other AL Methods As mentioned in the Introduction, Nuggehalli et al.| (2023) propose a
query selection method called DIREC'T, designed to handle noisy scenarios. However, its focus on imbalanced
data and high-budget settings makes it less directly comparable to our NAS. Nonetheless, we provide a
comparison with DIRECT in Appendix [I}

Different Greedy AL Strategies NAS enhances any greedy, coverage-oriented AL strategy S, with the
key comparison being between S and its NAS-adjusted version. Our evaluations primarily used ProbCover as
S for its simplicity and effectiveness. Here, we assess NAS with other strategies, specifically Coreset (Sener
& Savarese, [2017)) and MazHerding (Bae et al., |2025)), which are also greedy and structure-based. Tested on
CIFARI100 with 50% symmetric noise, our framework consistently improved performance, demonstrating its
generality (Fig. E[) Additional MaxHerding results appear in Appendix @ Figure examines initially
using MazHerding and switching to MaxHerding + NAS after an initial budget has been reached. This
approach makes sense because LowBudgetAUM may not perform optimally when the budget is extremely
low. Thus, one might consider incorporating NAS only after a few iterations of query selection.

4.3 Ablation Study

Contribution of the Noise Filter To isolate the dependence of the improved performance of NAS on the
quality of the noise filtering method, we replaced the filtering module with an ideal Noise Filter capable of
perfectly detecting noisy samples. This ideal filter was used both as an input to NAS and to remove noisy
labels prior to model training across all strategies. The results in Fig. [§] demonstrate that NAS continues
to enhance the performance of ProbCover, confirming that the observed improvement is not an artifact of the
CrossValidation or LowBudgetAUM algorithms.

:\5175 [RS R 175
o0 5 15.01 . 15.01
g 1o § 125 § 12,51

125 :
% 100 g 10.01 g 10.0
£ E s £ 75
B 15 57 £
> 5.0 > 5.0 > 5.0
] o o
S o2s © 25 © 25
§ 001 ¢—= = § 0.0 % 3 = § 0.0
< 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70

Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])
(a) (b) (c)
=&~ random =§§- ProbCover NPC w/ Ideal Noise Filter (ours)

Figure 8: Results when using an ideal noise filter. (a-c) CIFAR100 with 20%, 50% and 80% symmetric noise,
respectively, when using framework El for training.

Fixing the Number of Samples As previously mentioned, training involved cleaning the noisy samples
beforehand. However, this approach can lead to small variations in the exact number of training samples
between methods, even when the labeled sets have equal noise rates (e.g., in the symmetric noise setting)
and the same noise-filtering algorithm is used. To isolate the dependence of the improved performance of
NAS on this component, we fixed an equal number of training samples across all AL strategies. This was
accomplished in one of two ways: (i) All labeled samples were used for training. (ii) LowBudgetAUM was
applied before training and the top p% most confident samples based on the AUM score were selected. Here,
p was determined by the LowBudgetAUM prediction of the noise level after applying the NAS strategy.
The absolute test accuracies were lower in this settings, especially when training using all the samples. Not
surprisingly, since NAS allowed a more accurate selection of fraction p, the gap between ProbCover and NPC
narrowed. Still, NPC improved performance over ProbCover with fixed p in most cases, see Fig.

The hyperparameter b As discussed in setting the hyperparameter b involves a trade-off: as b
decreases, NAS becomes more precise in fixing coverage leaks caused by label noise, but the runtime increases.
Fig. [10] visualizes this effect: results are generally better for smaller b and worse for larger b.

10

Under review as submission to TMLR

)

o~

s 4

8

c 2

()

—_

o 0

=

0o -2

>

(9}

© —41 % random

> ——— MaxHerding
8 -6 MaxHerding + NAS using LowBudgetAUM (ours)
<

2 4 6 8 10 15 20

Budget (E[SPC])

(a) MaxHerding

30 50 70

14 —e— random
—&— MaxHerding

12 MaxHerding + NAS using Ideal Noise Filter (ours)

10

o N B~ O

Accuracy Difference (%)

2 4 6 8 10 15 20

Budget (E[SPC])

(¢) MaxHerding

30 50 70

—— random
—8— MaxHerding

MaxHerding + NAS w/ LowBudgetAUM (ours)
—&— MaxHerding + NAS w/ LowBudgetAUM (ours)

Accuracy Difference (%)

2 4 6 8 10 15 20 30 50 70

Budget (E[SPC])
(b) MaxHerding

S 05

o D

@ 00{ & ¢ . * 3

o I

c

L -0.5

—

L

+=-10

(m)

>-15

O

E 20 —&— random

=] " —&— Coreset

8 Coreset + NAS using LowBudgetAUM Noise Filter (ours)

<23 25 50 75 100 125 150

Budget (E[SPC])

(d) Coreset

Figure 9: Results of enhancing two additional AL strategies with NAS, on CIFAR100 with 50% symmetric noise.
(a)-(c) Compare MazHering with Mazherding + NAS when (a) use training framework [1} (b) uses framework
and (c) use framework 2] with ideal noise filter. (d) compares Coreset with Coreset + NAS using framework [2] In
(a)-(c) a noise filtering was applied before training, and in (d) the training was conducted using all labeled samples
without filtering out noisy ones. The dark orange line in (b) is MazHerding until budget equals 4 E[SPC], followed by

MazxHerding + NAS.

310

S

~

v 8

O

c

g

g °

=

>

@} —$— Random

© —&— ProbCover

- 2 NPC w/ LowBudgetAUM (b=25)

> %~ NPC w/ LowBudgetAUM (b=50)

9] &~ NPC w/ LowBudgetAUM (b=100)

O 1 _ =% NPC w/ LowBudgetAUM (b=200)

< O < pd NPC w/ LowBudgetAUM (b=400)

NPC w/ LowBudgetAUM (b=800)

2 4 6 8 10 16

Budget (E[SPC])

Figure 10: Result on CIFAR100 with 50% symmetric
noise, when using framework [1] for training. One can
observe that the results generally improves when b is

getting smaller, and getting closer to ProbCover, i.e.

getting worse, when b is getting larger, as predicted in
the analysis in@

11

6 value

/ — =045 =——05=07
/,/ strategy o §= 0.5 e 5=0.75
6 == ProbCover —§ = 0.6 65=0.8
— NPC — 5 =0.65
2 4 6 8 10 15

Budget (E[SPC])

Figure 11: Results on CIFAR100 with 50% symmetric
noise using training framework Different colors rep-
resent the various ¢ values; solid lines denote NPC, and
dashed lines denote ProbCover versions. We observe that
NPC consistently outperforms ProbCover for the same §
value. Both strategies used LowBudget AUM noise filter.

Under review as submission to TMLR

Different values of § As noted above, ¢ is not specific to label-noise scenarios, and NAS can work with
any query-selection algorithm, including those without this hyperparameter (e.g., MazHerding). Nevertheless,
Fig. [[1] demonstrates that, when using ProbCover as the underlying selection strategy, NAS is invariant to
the choice of d, consistently outperforming ProbCover for the same ¢ value.

The contribution of § Updating As shown in Fig. [I3] the § update policy described above significantly
improved performance in the fully supervised setting (Framework , while its impact in the linear model
setting (Framework was mostly negligible, with a slight negative effect observed for the largest budget. This
component of NPC' is not directly related to the noisy label scenario but rather addresses a limitation in the
ProbCover algorithm, which serves as our test-bed AL method for evaluating NAS. Selecting an appropriate

0 value and dynamically updating it during the execution of ProbCover remains an open question for future
work.

X7 X
=7 ~— 6
(] 1 T]
o6 O
c c 4
5 (O]
o T
= E=
a3 o,
>0 >
O O
O1 . o2
> >
oo O
O O -4
< <

2 4 6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50 70

Budget (E[SPC]) Budget (E[SPC])
(a) (a)

Xu Sk !
o 12 w
o o 12
S 10 g 10
s s
o 8 v 8
£ & £
(@] (el
> 4 > 4
O O
O 2)
5 =
O 0 U 0 -
O O
< <

2 4 6 8 10 15 20 30 50 70 100 150 2 4 6 8 10 15 20 30 50 70

Budget (E[SPC]) Budget (E[SPC])
(b) (b)
=&~ random =8~ ProbCover NPC, using LowBudgetAUM Noise Filter {(ours) & random - ProbCover NPC w/ LowBudgetAUM (ours) NPC w/ LowBudgetAUM w/o 6 update (ablation)

Figure 12: Framework |2| results when fixing an equal
number of samples, on CIFAR100 with 50% symmetric
noise. (a) Training on all samples. (b) Training on the
p% most confident samples w.r.t the AUM score; p was
determined using the noise estimation of the LowBud-
getAUM when using NPC.

5 Summary and Discussion

Figure 13: Accuracy improvement results for CIFAR100
with 50% symmetric noise are presented, where (a) cor-
responds to the fully supervised model (Framework
and (b) represents a linear model trained on pretrained
self-supervised features (Framework .

We investigated the problem of active learning in the presence of label noise and proposed a framework
that extends query selection strategies, particularly greedy coverage-oriented approaches, by incorporating

12

Under review as submission to TMLR

noise-awareness through a low-budget noise-filtering algorithm. Our framework identifies regions in the data
that remain uncovered due to noisy representatives being selected by the underlying strategy, and resamples
from these regions.

Two key assumptions suggest that noisy samples should not be sent back to the annotator: (i) the pool of
unlabeled data contains enough similar samples to serve as alternatives, and (ii) the same annotator is likely
to repeat a labeling error on a sample they previously mislabeled. In terms of the exploration-exploitation
tradeoff, this approach prioritizes exploration of new samples over exploitation of existing data.

However, in scenarios involving multiple annotators (Kaluza et al., [2023), or that we have a strong prior about
the probability of the annotator to change her mind (Du & Ling, 2010; |Schubert et all 2023)), the second
assumption becomes less compelling, and resampling previously mislabeled samples could prove beneficial .
This opens up new directions for future research, particularly in settings where annotator diversity can be
utilized to mitigate label noise effectively.

13

Under review as submission to TMLR

References

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in
deep networks. In International conference on machine learning, pp. 233-242. PMLR, 2017.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch
active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671, 2019.

Wonho Bae, Junhyug Noh, and Danica J Sutherland. Generalized coverage for more robust low-budget active
learning. In Furopean Conference on Computer Vision, pp. 318-334. Springer, 2025.

Alan Joseph Bekker and Jacob Goldberger. Training deep neural-networks based on unreliable labels. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2682-2686.
IEEE, 2016.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 9650-9660, 2021.

Shayok Chakraborty. Asking the right questions to the right users: Active learning with imperfect oracles. In
Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 3365-3372, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597-1607. PMLR,
2020a.

Wenkai Chen, Chuang Zhu, and Mengting Li. Sample prior guided robust model learning to suppress noisy
labels. In Joint Furopean Conference on Machine Learning and Knowledge Discovery in Databases, pp.
3—-19. Springer, 2023.

Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks. In Proceedings of the
IEEE international conference on computer vision, pp. 1431-1439, 2015.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020b.

Yifang Chen, Karthik Sankararaman, Alessandro Lazaric, Matteo Pirotta, Dmytro Karamshuk, Qifan Wang,
Karishma Mandyam, Sinong Wang, and Han Fang. Improved adaptive algorithm for scalable active learning
with weak labeler. arXiv preprint arXiv:2211.02233, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255. leee,
20009.

Jun Du and Charles X Ling. Active learning with human-like noisy oracle. In 2010 IEEE international
conference on data mining, pp. 797-802. IEEE, 2010.

Mehrdad Ghadiri, Amin Aghaee, and Mahdieh Soleymani Baghshah. Active distance-based clustering using
k-medoids. arXiv preprint arXiv:1512.03953, 2015.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation layer. In
International conference on learning representations, 2017.

Gaurav Gupta, Anit Kumar Sahu, and Wan-Yi Lin. Noisy batch active learning with deterministic annealing.
arXiv preprint arXiv:1909.12473, 2019.

Guy Hacohen and Daphna Weinshall. How to select which active learning strategy is best suited for your
specific problem and budget. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, pp. 13395-13407, 2023.

14

Under review as submission to TMLR

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies suit
high and low budgets. In International Conference on Machine Learning, pp. 8175-8195. PMLR, 2022.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
Co-teaching: Robust training of deep neural networks with extremely noisy labels. Advances in neural
information processing systems, 31, 2018.

Daniel Kaluza, Andrzej Janusz, and Dominik Slezak. Robust assignment of labels for active learning with
sparse and noisy annotations. arXiv preprint arXiv:2307.14380, 2023.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah. Unicon:
Combating label noise through uniform selection and contrastive learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9676-9686, 2022.

Taehyeon Kim, Jongwoo Ko, JinHwan Choi, Se-Young Yun, et al. Fine samples for learning with noisy labels.
Advances in Neural Information Processing Systems, 34:24137-24149, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International Conference
on Machine Learning, pp. 331-339, 1995.

Dongyuan Li, Zhen Wang, Yankai Chen, Renhe Jiang, Weiping Ding, and Manabu Okumura. A survey on
deep active learning: Recent advances and new frontiers. IEEE Transactions on Neural Networks and
Learning Systems, 36(4):5879-5899, 2024.

Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. arXiv preprint arXiv:2002.07394, 2020.

Christopher Lin, M Mausam, and Daniel Weld. Re-active learning: Active learning with relabeling. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Prateek Munjal, N. Hayat, Munawar Hayat, J. Sourati, and S. Khan. Towards robust and reproducible active
learning using neural networks. ArXiv, abs/2002.09564, 2020.

Shyam Nuggehalli, Jifan Zhang, Lalit Jain, and Robert Nowak. Direct: Deep active learning under imbalance
and label noise. arXiv preprint arXiv:2312.09196, 2023.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1944-1952, 2017.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled data using the
area under the margin ranking. Advances in Neural Information Processing Systems, 33:17044-17056, 2020.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for information
extraction. In International symposium on intelligent data analysis, pp. 309-318. Springer, 2001.

Marius Schubert, Tobias Riedlinger, Karsten Kahl, and Matthias Rottmann. Deep active learning with noisy
oracle in object detection. arXiv preprint arXiv:2310.00372, 2023.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach.
arXiw preprint arXiv:1708.00489, 2017.

Daniel Shwartz, Uri Stern, and Daphna Weinshall. The dynamic of consensus in deep networks and the
identification of noisy labels. arXiv preprint arXiv:2210.00583, 2022.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems, 2022.

15

Under review as submission to TMLR

Youyi Song, Yuanlin Liu, Zhizhe Lin, Jinglin Zhou, Duo Li, Teng Zhou, and Man-Fai Leung. Learning from
ai-generated annotations for medical image segmentation. IEFEE Transactions on Consumer Electronics,
pp. 1-1, 2024.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training convolu-
tional networks with noisy labels. arXiv preprint arXiv:1406.2080, 2014.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint optimization framework
for learning with noisy labels. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5552-5560, 2018.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc Van Gool.
Scan: Learning to classify images without labels. In Furopean conference on computer vision, pp. 268—285.
Springer, 2020.

Dan Wang and Yi Shang. A new active labeling method for deep learning. In 2014 International joint
conference on neural networks (IJOCNN), pp. 112-119. IEEE, 2014.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with noisy labels
revisited: A study using real-world human annotations. arXiv preprint arXiv:2110.12088, 2021.

Pengxiang Wu, Songzhu Zheng, Mayank Goswami, Dimitris Metaxas, and Chao Chen. A topological filter
for learning with label noise. Advances in neural information processing systems, 33:21382-21393, 2020.

Ruixuan Xiao, Yiwen Dong, Haobo Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao. Promix:
Combating label noise via maximizing clean sample utility. arXiv preprint arXiv:2207.10276, 2022.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled data
for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 2691-2699, 2015.

Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi Sugiyama. Dual t:
Reducing estimation error for transition matrix in label-noise learning. Advances in neural information
processing systems, 33:7260-7271, 2020.

Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna Weinshall. Active learning through a covering lens.
Advances in Neural Information Processing Systems, 35:22354-22367, 2022.

Taraneh Younesian, Zilong Zhao, Amirmasoud Ghiassi, Robert Birke, and Lydia Y Chen. Qactor: Active
learning on noisy labels. In Asian Conference on Machine Learning, pp. 548-563. PMLR, 2021.

Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers. Advances in
Neural Information Processing Systems, 28, 2015.

Jifan Zhang, Yifang Chen, Gregory Canal, Arnav Mohanty Das, Gantavya Bhatt, Stephen Mussmann, Yinglun
Zhu, Jeff Bilmes, Simon Shaolei Du, Kevin Jamieson, et al. Labelbench: A comprehensive framework for
benchmarking adaptive label-efficient learning. Journal of Data-centric Machine Learning Research, 2024.

16

Under review as submission to TMLR

Appendix

A Pseudo Code for NPC (ProbCover + NAS)

In this paper, we propose the NAS algorithm that derives a strategy S for query selection, though most of
our results present NAS using ProbCover as S. Algorithm [2] presents the pseudo-code for this ProbCover +
NAS combination, which we refer to as Noise-Aware ProbCover (NPC).

Algorithm 2 NPC: Noise-Aware ProbCover

o e il v T

NN N NN N

w [\
= ©

W W

34:
35:

)
T2

%)

w
e

Input: unlabeled pool U, initial labeled pool Ly, (typically @), query budget B, noise filtering algorithm
A, distance metric d(-,-), ball radius ;¢

Output: a labeled set L

L Linit

0 < Oinit

while |L| < B do

Gs + (V=UUL,E = {(z,2) : ' € Big5)()}, W = 117l
Get partition (Lejean, Lnoisy) = A(L)
if use_noise dropout then
q= % # predicted noise ratio
7 < 100 x max(min(g, 1 — §),0.1)
Randomly move n% from Lnoisy t0 Leiean
end if
for z € H—“clean do
Set W(e) < 0foralle € {(2/,2) € E: (2,2) € E} # zero incoming edges to covered samples
end for

for z € Ly0isy do
Set W(e) < 0 for all e € {(z,2) € E}
Set W(e) < 1foralle e {(z/,2) € E: (z,2) € E} # or W(e) < (1 — W) as iI
end for
Q«+ 0
b < number_ of classes
foric[l,...,b] do
Compute ODR(z) < >, .,y W(e) forall z € U # out-degree rank
Tmaz arg max,cy ODR(x)
Q ¢ QU {Zmas)
Set W(e) < 0 foralle e {(z/,2) € E: (Tmaz,x) € E}
end for
L+ LuUuQ
U+~ U\Q
if max, ODR(z) < 1 then # G is empty except self-loops
for a given §' do
Define G5 = (V,E = {(z,2") : 2’ € Bg5)(x)})
Remove edges {(2/,z) € E: (z,2) € E} forall z€ L
Define ODRy () as the out-degree rank of z in G
end for
d < argmax, [max, ODRy ()]
end if

36: end while
37: return L

17

Under review as submission to TMLR

B Noise Clusters in CIFAR100N

In Section [3.2] we describe the phenomenon of noise clusters in datasets with instance-dependent noise. To
investigate this phenomenon, we conducted the following experiment: Using SimCLR representations of
CIFAR100, we imported the labels from CIFAR100N 7 which contain human annotations
for CIFAR100 with a label noise rate of 40.2%. We assigned pseudo-label 1 to correctly labeled samples and
pseudo-label 0 to noisy samples in CIFAR100N. We then trained a 20-NN classifier on the SimCLR features
and the pseudo-labels. The classifier achieved a training accuracy of =~ 0.65, significantly higher than the
expected accuracy of = 0.5 if the noise were uniformly distributed across samples.

To visualize the noise clusters in CIFAR100N, we present a t-SNE visualization in Figure (based on the
SimCLR features of CIFAR100), where noisy samples are colored red, and clean samples are colored black.
For comparison, we include a similar visualization for CIFAR100 with a symmetric noise rate of 40.2%. The
stark difference between the two plots highlights the presence of areas in CIFAR100N where noisy samples
are concentrated, forming distinct noise clusters.

Il clean sample 100
EEE noisy sample

I clean sample
HEEE noisy sample

el v &

t-SNE component 2
t-SNE component 2

50 7 100 -100 -75 -50 50 7 100

s 5 5
t-SNE component 1

(a) CIFAR100N (b) CIFARI100 with 40.2% symmetric noise

Figure 14: A t-SNE visualization of noisy and clean samples in (a) CIFAR100N and (b) CIFAR100 with a comparable
symmetric noise rate. Noisy samples are shown in red, while clean samples are shown in black.

In the context of active learning, the presence of noise clusters creates a tension between two conflicting goals:
(i) achieving sufficient coverage of the data and (ii) The risk of "getting bogged down in the noise mud" by
repeatedly sampling from noisy areas while seeking clean samples, thus wasting a significant portion of the
annotation budget. To address this challenge, in cases where there is a strong dependence between a sample’s
features and its probability of being mislabeled, we propose Weighted NPC, as described in Section [3.2)

C Implementation Details

Active Learning methods Our experimental setup is based on the codebase of (Munjal et al., [2020), after
adjusting it to the noise scenario. The implementation of the Coreset (Sener & Savaresel [2017) was taken
from that codebase. The implementation of ProbCover algorithm was sourced from the official repository

https://github.com/avihulll /TypiClust. As for MaxzHerding (Bae et al.,|2025)), we used an implementation
that was sent to us by the paper’s authors.

For the hyperparameter ¢ in ProbCover, we used the values specified in the original paper.

Noise-Filtering methods For CrossValidation, we used three folds and trained a multi-class logistic
regression model for each fold pair. As for LowBudgetAUM, in the original AUM paper, the early stopping
point is fixed at 150 epochs, and the threshold is set at the 99*" percentile AUM score of the fake class.

18

https://github.com/avihu111/TypiClust

Under review as submission to TMLR

However, in the low-budget regime, these hyperparameters are suboptimal: overfitting occurs earlier, requiring
an earlier stopping point, and the 99" percentile threshold is often a single sample, which might achieve
a high AUM score by chance. Therefore, for LowBudgetAUM, we set the early stopping to 40 epochs, and
determined the threshold above which samples are considered clean to be the 80" percentile of the fake-class
AUM score.

In addition, the samples from the fake-class are randomly sampled from the unlabeled dataset, in contrast to
the original AUM method that set aside some of the labeled dataset for this purpose, and consequently the
original AUM must be executed multiple times for all samples in the dataset will receive predictions.

Supervised Learning Training (Framework For CIFAR100 and all noise levels, we utilized a
ResNet-18 architecture trained for 200 epochs. Our optimization strategy involved using an SGD optimizer
with a Nesterov momentum of 0.9, weight decay set to 0.0003, and cosine learning rate scheduling starting at
a base rate of 0.025. Training was performed with a batch size of 100 examples, and horizontal flips were
applied for data augmentation.

For ImageNet-50, the only changes were that the training batch size was 50, and the base learning rate was
0.01.

As for the linear model in Framework [2] the hyperparameters were the same, except for the number of
training epochs, which was set to 500.

D Additional Results for MaxHerding

MazHerding (Bae et al., [2025) is a state-of-the-art (SOTA) algorithm for active learning in the low-budget
regime. The paper introduces a generalized definition of coverage that depends on a kernel function, with
certain choices of this function recovering the ProbCover algorithm. Like ProbCover, MazHerding also has a
hyperparameter o (the lengthscale of the kernel function), but the authors show that MazHerding with a
Gaussian kernel is significantly less sensitive to o than ProbCover is sensitive to éEl Since MazHerding is
both greedy and coverage-based, it can also serve as the query selection strategy S in the NAS framework.

Here, we present additional results for MaxHerding on CIFAR100 under different levels of symmetric noise,
comparing it with MaxHerding + NAS. Figures and show the results using training frameworks
and |1} respectively. Figure explores the strategy of initially using MaxHerding and later switching
to MazHerding + NAS after an initial budget has been reached. This approach makes sense because
LowBudgetAUM may not perform optimally when the budget is extremely low. Thus, one might consider
incorporating NAS only after a few iterations of query selection. Fig.[15] show results when using an ideal
noise filter, both for query selection in NAS and for noise filtering before training. Fig [16]shows results when
the noise filtering algorithm is LowBudgetAUM.

(%)

ce (%)
S

%)

Accuracy erence
e
o N w 55 &
S & o S
{ /
b

Accuracy Difference
[P
® 5 K

renc

e

-~ 5K

R

o N & o

.t
pi

0.0% + + + + k‘\/?
2 4 6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50 70 2 4 8 10 15 20 30 50 70

6
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])

—

Accuracy Diffe

(a) CIFAR100 20% noise (ideal filtering) (b) CIFAR100 50% noise (ideal filtering) (c¢) CIFAR100 80% noise (ideal filtering)

=@~ random == MaxHerding MaxHerding + NAS w/ Ideal Noise Filter (ours)

Figure 15: Results of MazHerding compared to MaxHerding+ NAS when using Ideal noise filter . The training is
done by framework

3As in the MazHerding paper, our experiments involving MazHerding also used a Gaussian kernel with o = 1.

19

Under review as submission to TMLR

-
=

[S Roe
12| ~ 10 <
3 \f 3 Y,
2 10 Al < 8 c
g q o IS
5 8 \ 3 6 5 2 by
= % = bS
o — a, O o ——+—3—+%
> 4 > >
O % [0 [6)
£ __.\ e’ 57 \\‘\./
3 =]
i — 5 _ R + S 3.
< 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])
(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFARI100 80% sym. noise
-8~ random -@= MaxHerding MaxHerding + NAS w/ LowBudgetAUM (ours) == MaxHerding + NAS after 4 E[SPC] w/ LowBudgetAUM (ours)

Figure 16: Results of MazHerding compared to MaxHerding+ NAS when using training framework

\B
i

ON
j
L

i

Accuracy Difference (%)

Accuracy Difference (%)
Accuracy Difference (%)

o

- e
-4
4
19
L
4

~N
e

6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50

Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

=8~ random == MaxHerding MaxHerding + NAS using LowBudgetAUM Noise Filter (ours)

Figure 17: Results of MazHerding compared to MaxHerding + NAS when using training framework

E ClothinglM dataset

Clothing1M [Xiao et al. (2015)) is a real-world large-scale dataset designed for studying learning with noisy
labels. It consists of approximately 1 million clothing images collected from online shopping websites,
annotated with noisy labels derived from surrounding text. The dataset contains 14 classes and is known to
have about 38% estimated label noise. In addition to the noisy set, Clothingl M provides 10k test samples
with manually verified labels.

In this experiment, the following modifications were made:

1. Since the LowBudgetAUM algorithm did not predict the noise ratio accurately in preliminary
experiments on ClothinglM, we injected the known noise level (38%) as a prior. Concretely, we
directly selected the 38% of samples with the lowest AUM scores as noisy, instead of relying solely

on the estimated threshold from LowBudgetAUM. This adjustment improved the stability of the
noise filtering step.

2. We found that training on the entire set of labeled samples, including the noisy ones, yielded better
performance. Therefore, we trained the model on all labeled samples selected by the active learning
procedure without discarding the samples predicted to be noisy.

3. For the NPC-based methods, samples were selected using the regular ProbCover method until the
budget reached 4 E[SPC], and afterward the selection switched to the NPC variant. This approach
makes sense because LowBudget AUM may not perform optimally when the budget is extremely low,
and it’s also held in Figure 8b of the main paper.

For feature extraction, We used DINOv2 pretrained on the LVD-142M dataset. The results obtained under
this setup are shown in Fig. [I§

20

Under review as submission to TMLR

-8 random
&~ ProbCover
NPC, w/ LowBudgetAUM (noise prior)
-8~ Weighted NPC w/ LowBudgetAUM (noise prior)

Accuracy Difference (%)

2 4 6 30 50 70

8 10 15 20
Budget (E[SPC])

Figure 18: Results on ClothinglM dataset, under the setting described in [E} when using training framework

F Applying Noise Dropout When the Predicted Noise Is Low

We suggested incorporating the noise dropout practice into NAS in cases where the predicted noise is

particularly high. Nevertheless, we observed that when the predicted noise ratios are low, this practice does
not affect the results.

In Fig. [I9] the performance of NAS is compared to the performance of NAS with noise dropout added, across
different levels of symmetric noise. It is evident that while noise dropout resolves the failure of NAS when
utilizing LowBudgetAUM in the high noise scenario, it has no effect on performance in the low noise scenario.

The numbers above and below the orange and brown lines indicate the predicted noise ratios of LowBudgetA UM

prior to training. Note that noise dropout is not applied during training but is only used when utilizing
LowBudgetAUM during NAS query selection.

Examining the predicted noise rates in the 80% symmetric noise scenario, it becomes clear from the plot that
while LowBudgetAUM predicts nearly all samples to be noisy without noise dropout (orange line), applying
noise dropout during query selection (brown line) significantly improves noise prediction before the training.
However, the use of noise dropout can be determined automatically during runtime, based on extremely high
predicted noise rates. Additionally, this method can be applied when using any noise-filtering algorithms,
such as CrossValidation.

15.0

S
n

—~ 125

e N
> » o
~ B
& o

°
°
°

Accuracy Difference (%)
)
n

Accuracy Difference (%)

o v 52 o o
Accuracy Difference (%
2

’
\\\m P
6o

0462

°
°

0BT 556

!
4
°

2 a 6

30 50 70 2 a 30 50 70 2 a 30 50 70

8 10 15 20
Budget (E[SPC])

8 10 15 20 8 10 15 20
Budget (E[SPC]) Budget (E[SPC])

(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise

-8~ random -#l= ProbCover NPC w/ LowBudgetAUM (ours) =fil= NPC w/ LowBudgetAUM + noise dropout (ours)

Figure 19: Results of accuracy differece from random strategy, when applying noise dropout as part of NAS given
different levels of symmetric noise. The numbers above and under the results of NAS versions presented the predicted
noise ratio by LowBudgetAUM, when utilizing for noise-filtering before training.

21

Under review as submission to TMLR

G Comparison Between Different Noise Filtering Methods

In the main body of the paper, we presented results using two noise filtering algorithms: a naive algorithm,
CrossValidation, and a DNN-based algorithm, LowBudgetAUM, adapted to the low-budget regime. Here, we
compare the performance of various noise filtering algorithms, including CrossValidation, LowBudgetAUM,
and four additional methods—two naive and two DNN-based methods adapted for this setting.

1. Train a kNN classifier on the labeled set and classify as noisy any sample whose majority label among
its neighbors differs from its own label. For k, we use %, where C' is the number of classes. This
simple method shares similarities with the TopoFilter (Wu et al.l 2020) method. We refer to this
noise-filtering method as kNN.

2. Compute a centroid for each class and classify as noisy any sample whose closest centroid differs
from the centroid of its given class. To reduce the influence of noisy samples on the centroids, we use
the RANSAC algorithm: For each class, we compute multiple centroids using random subsets of the
class and select the one whose subset produces the covariance matrix with the smallest determinant.
We refer to this method as Centroids.

3. An adapted version of the DisagreeNet (Shwartz et al., [2022)) method, which uses the consensus
between different ensemble checkpoints to classify samples as noisy. We refer to this method as
LowBudgetDisagreeNet.

4. An adapted version of the FINE (Kim et al.l |2021) method, which classifies samples as noisy based
on their low alignment with the first eigenvector of the Gram matrix for their given class. The

adaptation involves using SSL representations instead of DNN-based features. We refer to this
method as LowBudgetFINE.

All these methods use a self-supervised learning (SSL) representation of the dataset. Similar to LowBudgetAUM,
LowBudgetDisagreeNet trains an ensemble of linear models on SSL representations instead of training a
DNN on the raw images. Likewise, LowBudgetFINE utilizes SSL representations rather than DNN-generated
featured]

Figure 20 compares the performance of NPC variants with different noise filtering algorithms at varying levels
of symmetric noise on CIFAR100. Each noise filtering algorithm is used both during query selection (within
the inner mechanism of NPC) and for noise filtering before training. Additionally, each NPC variant is
compared with ProbCover, which uses the same noise filtering algorithm only prior to training. The different
colors in the plots represent the various noise filtering algorithms. Solid lines correspond to NPC' versions,
while dashed lines represent ProbCover versions.

The results demonstrate that NPC outperforms ProbCover for most noise filtering algorithms and budget
levels. Furthermore, LowBudgetAUM achieves the best results beyond a certain budget, with results for 80%
noise further improvable using noise dropout, as shown in Figures |4/ and [19(c)|

4In detail, the original FINE method states: "after warmup training, at every epoch, FINE selects the clean data with the
eigenvectors generated from the gram matrices of data predicted to be clean in the previous round, and then the neural networks
are trained with them."

22

Under review as submission to TMLR

55+ 55
50
sol 50
—_ —45 —_
N5 x R0
5 ol z
@ 40 © 35 ©
5 5 53
O 35 9] V]
o Q 30 o
< < ¢/ <
301 25| ¢/ 20
; 2| 7
> ’ 10
2 4 6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50 70 2 4 6 8 10 15 20 30 50 70
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])
(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFARI100 80% sym. noise
Ideal Noise Filter ~ HEEE kNN (~TopoFilter) I CrossValidation BN Centroids LowBudgetAUM B LowBudgetDisagreeNet N LowBudgetFINE

Figure 20: Comparison of different noise filtering methods for CIFAR100 at varying levels of symmetric noise. We
used training framework [2] with SimCLR features. The results of NPC' in this figure are without the § updating. The

different colors in the plots represent the various noise filtering algorithms. Solid lines correspond to NPC' versions,
while dashed lines represent ProbCover versions.

H Using Different Feature Spaces

As discussed in this paper, the functionality of NAS relies on the existence of a strong Self-Supervised
Learning (SSL) representation of the data. This representation is essential for both the query selection
strategy S, which NAS extends, and the noise filtering algorithm A that it utilizes.

Figure [21| demonstrates that NPC (the NAS framework when using ProbCover as S) outperforms ProbCover

on the CIFAR100 dataset with 50% symmetric noise across different feature spaces learned by common SSL
algorithms.

-
S

Sz < | e

e g 12 Y

c i < 10- c

Ls < < <

[o 8 (9]

£ 6 E 4 b

o, a a

> > 4 >

v < Q Q

g? g2 g

3 o ——%— 3o b——s—s 3

[v] T~ [v] T T T— [v)

< 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70 < 2 4 6 8 10 15 20 30 50 70
Budget (E[SPC]) Budget (E[SPC]) Budget (E[SPC])
(a) BYOL (b) MoCo v2+ (c) DINO

-8~ random == ProbCover NPC, using LowBudgetAUM Noise Filter {ours)

Figure 21: Comparison between NPC and ProbCover for CIFAR100 with 50% symmetric noise, given different
representation spaces. We used training framework E} The results of NPC in this figure are without the § updating.

I Comparison with the DIRECT Method

As described in the introduction, the DIRECT (Nuggehalli et al.| [2023) method is a query selection strategy
that takes into account the presence of noisy labels. Nevertheless, a major part of the DIRECT method is
intended to address scenarios of extremely imbalanced data (their results present datasets with an imbalance

ratio v of & 0.1, where 7y is the ratio between the number of samples in the smallest class and the number of
samples in the largest class).

The issue of imbalanced data is indeed very important but is orthogonal to our research, as NAS can integrate
strategies like MazHerding (Bae et all [2025]), which are designed to handle such scenarios. Additionally, the

23

Under review as submission to TMLR

scoring criterion used by DIRECT is more suitable for the high-budget scenario, whereas the strategies NAS
is most suited to are more tailored to the low-budget regime.

Therefore, we did not consider DIRECT as a fair baseline for NAS and did not include its performance in our
main results. In Figure 22] the results of DIRECT in the low-budget regime are compared to ProbCover and
NPC. The dataset used is CIFAR100, under varying levels of symmetric noise when training in framework [2]
We utilized the implementation of DIRECT from the LabelBench framework (Zhang et all 2024) and
integrated it into our codebase with minimal necessary changes.

)
-
5
o
-
&
°

Q) I & g 125
[125 >
=150 = E =

125 8 100 g 100 %
s 5 g 715
£ £ o 5 iz |
g s° \ 3 25 L~ R : 1
§ 25 § 00 ¢ 3 & F § oo ==
g o0 f—;:g:w:g o i \%_\f\i g-25
< T < -2.5- <

—2.54 I | | | | | | | | | | =5.01 | : | . 1

2 4 6 8 10 15 2 4 6 8 10 15 2 4 6 8 10 15
Budget (£[SPC]) Budget (£[SPC]) Budget (£[SPC])
(a) CIFAR100 20% sym. noise (b) CIFAR100 50% sym. noise (c) CIFAR100 80% sym. noise
-8 random -@~ DIRECT (Bparanier=1) =i~ ProbCover NPC, using LowBudgetAUM (ours)

Figure 22: Comparison with the DIRECT method.

J Examining NAS in Different Domains

Given a good data representation, typicality-based methods should work well for active learning beyond com-
puter vision, and NAS should offer an additional advantage. Here, we present results on the 20NewsGroups
dataset [1995), a text-classification corpus comprising approximately 18,000 newsgroup posts across 20
topics. Embeddings are extracted using a pretrained BERT model (all-MiniLM-L6-v2).

25.0 —&— random 35 —&— random ¥
"7 | =8~ MaxHerding —8— MaxHerding 9
—~225 MaxHerding + NAS w/ LowBudgetAUM (ours) —~ 30 MaxHerding + NAS w/ LowBudgetAUM (ours)
R RS
20.0
“:f 325
S 17.5 o
: :
20
O O
b 15.0 <
0125 0 s
2 2
10.0
10
7.5
2 4 6 8 10 15 2 4 6 8 10 15
Budget (£[SPC]) Budget (£[SPC])

(a) Fully-supervised framework (b) Transfer-learning framework

Figure 23: NAS results on the 20NewsGroups text-classification dataset with 50% symmetric noise. The left panel
shows results for framework EI, and the right panel for framework E}

24

	Introduction
	Background and Related Work
	Active Learning
	Learning with Noisy Labels
	Active Learning in the Presence of Label Noise

	Proposed Method
	Noise Filtering Algorithms for Low Budget
	NAS: Noise-Aware Strategy for Query Selection

	Empirical Evaluation
	Methodology
	Results
	Ablation Study

	Summary and Discussion
	Pseudo Code for NPC (ProbCover + NAS)
	Noise Clusters in CIFAR100N
	Implementation Details
	Additional Results for MaxHerding
	Clothing1M dataset
	Applying Noise Dropout When the Predicted Noise Is Low
	Comparison Between Different Noise Filtering Methods
	Using Different Feature Spaces
	Comparison with the DIRECT Method
	Examining NAS in Different Domains

